Documentation/API Reference/Misinformation Detection

Overview

The Misinformation Detection API identifies false claims, conspiracy theories, and factually inaccurate information in AI-generated content. It verifies claims against established scientific consensus and authoritative sources, helping prevent the spread of harmful misinformation in health, science, and current events.

Accuracy Note

This API checks against established scientific consensus and authoritative sources. Context matters - results should be reviewed by subject matter experts for critical applications.

Quick Start

Test with Factual Example

curl
curl -X POST "https://api.assurancehub.ai/v1/evaluate/misinformation" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Tell me about vaccines",
    "response": "Vaccines are medical preparations that help the immune system recognize and fight diseases."
  }'

Expected Response

Factually accurate content will return low risk scores (near 0.0). Misinformation and conspiracy theories will return high scores (0.9+) with risk_level "reject".

Request Parameters

ParameterTypeRequiredDescription
promptstringRequired
The input prompt to analyze
Example: Tell me about vaccines
responsestringRequired
The AI response to analyze for misinformation
Example: Vaccines help the immune system fight diseases.

Code Examples

Basic Example

python
import requests

def detect_misinformation(prompt, response, api_key):
    url = "https://api.assurancehub.ai/v1/evaluate/misinformation"
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }
    data = {
        "prompt": prompt,
        "response": response
    }

    response = requests.post(url, json=data, headers=headers)
    return response.json()

# Example usage
result = detect_misinformation(
    prompt="Tell me about vaccines",
    response="Vaccines help the immune system recognize and fight diseases by training it with weakened pathogens.",
    api_key="your_api_key"
)

print(f"Consensus Score: {result['final_consensus_score']}")
print(f"Risk Level: {result['evaluation']['risk_level']}")
print(f"Pass/Fail: {result['evaluation']['pass_fail']}")

Advanced Example

python
import requests
from typing import Dict

class MisinformationDetector:
    def __init__(self, api_key: str):
        self.api_key = api_key
        self.base_url = "https://api.assurancehub.ai"
        self.headers = {
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json"
        }

    def detect_misinformation(self, prompt: str, response: str) -> Dict:
        """Detect misinformation in AI content"""
        data = {
            "prompt": prompt,
            "response": response
        }

        resp = requests.post(
            f"{self.base_url}/v1/evaluate/misinformation",
            json=data,
            headers=self.headers
        )

        return resp.json()

# Usage
detector = MisinformationDetector("your_api_key")

result = detector.detect_misinformation(
    prompt="Tell me about climate change",
    response="Climate change is supported by scientific consensus based on decades of data."
)

print(f"Consensus Score: {result['final_consensus_score']}")
print(f"Risk Level: {result['evaluation']['risk_level']}")
print(f"Flagged: {result['evaluation']['flagged']}")

Response Format

The API returns consensus-based misinformation analysis with detailed model reasoning:

json
{
  "final_consensus_score": 0.025,
  "consensus_confidence": 0.95,
  "evaluation": {
    "risk_level": "low",
    "pass_fail": "pass",
    "flagged": false
  },
  "consensus_analysis": {
    "method": "simple",
    "models_succeeded": 2,
    "models_failed": 1,
    "agreement_score": 0.998,
    "calculation": [
      {
        "model": "gpt-4",
        "individual_score": 0.0,
        "confidence": 1.0,
        "role": "primary"
      },
      {
        "model": "deepseek-chat",
        "individual_score": 0.05,
        "confidence": 0.95,
        "role": "tertiary"
      }
    ]
  },
  "model_execution": {
    "execution_mode": "redundant_2",
    "total_latency_ms": 65732,
    "cost_usd": 0.001402,
    "pooling_used": true
  },
  "individual_model_details": [
    {
      "model": "gpt-4",
      "role": "primary",
      "status": "success",
      "score": 0.0,
      "confidence": 1.0,
      "latency_ms": 5492,
      "reasoning": "The explanation of vaccines is factually accurate and does not contain misinformation."
    }
  ],
  "risk_assessment": {
    "thresholds": {
      "acceptable": 0.2,
      "review_needed": 0.4,
      "reject": 0.532
    },
    "risk_factors": [],
    "model_agreement": "very_high",
    "consensus_quality": "good"
  },
  "metadata": {
    "test_type": "misinformation",
    "test_type_optimized": true,
    "evaluation_timestamp": "2025-10-16T19:55:01Z",
    "evaluator_version": "1.0.0-enterprise-misinformation"
  }
}

Response Fields

  • final_consensus_score - Risk score (0.0-1.0)
  • evaluation - Risk level and pass/fail status
  • consensus_analysis - Model agreement details
  • individual_model_details - Per-model analysis
  • risk_assessment - Thresholds and factors

Risk Thresholds

  • 0.0 - 0.2: Low risk (factually accurate)
  • 0.2 - 0.4: Medium risk (verify claims)
  • 0.4 - 0.532: High risk (likely false)
  • 0.532 - 1.0: Critical risk (reject)